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This paper shows that the architecture of a steam generator for a power plant can be deduced on the basis
of the constructal law. According to constructal theory, the flow architecture emerges in time such that it
provides progressively greater access to its currents. The circulation of water is driven by buoyancy in one
large tube (the downcomer) and many parallel smaller tubes (the riser). The total flow volume is fixed.
Two flow models are used: single phase liquid in the downcomer and riser, and liquid–vapor mixture
in the riser tubes. Features that result from constructal design are: the tube diameters, the number of
riser tubes, the water circulation rate, the rate of steam production, and how the flow architecture should
change when the operating pressure and the size of the flow system change.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we propose to use constructal theory in the con-
ceptual design of steam generators for large-scale commercial
power plants. Steam generators represent a major area for engi-
neering development, and a most fertile field for novel methods
of design and for new design concepts. Constructal theory is ideally
suited for this because it begins the conceptual design with a clean
slate, and invites the designer to recognize and consider all the
possible and competing configurations. The architecture of the
complex flow system is the unknown. There is no bias, no pre-
existing rule of thumb.

Constructal theory focuses attention on the generation of flow
configurations [1,2]. Natural and engineered flow systems have
configurations. They are not amorphous. ‘‘Flow” represents the
movement of one entity relative to another (the background). To
describe a flow, we speak of what the flow carries (fluid, heat,
mass), how much it carries (mass flow rate, heat current, species
flow rate), and where the stream is located in the available space.
The ‘‘where” is the drawing, i.e. the design.

According to constructal theory, the generation of flow configu-
ration can be reasoned based on an evolutionary principle of in-
crease of flow access in time (the constructal law): ‘‘For a finite-
size flow system to persist in time (to live) its configuration must
change in time such that it provides greater and greater access to
ll rights reserved.

: +1 919 660 8963.
its currents” [3]. The evolution of flow configuration is like an ani-
mated movie, which runs in a particular direction in time such that
each screen (i.e. each drawing) is replaced by a screen that flows
more easily as a whole.

The flow configuration that emerges from this natural tendency
is the result of the persistent struggle, contortion and mechanism
by which the global flow system achieves global flow performance
under global constraints. A growing literature is showing that the
constructal law is being used for better engineering and for better
organization of the movement and connecting of people, goods and
information [1–18]. This direction is recognized as constructal de-
sign, and with it designers seek not only better configurations
but also better (faster, cheaper, more direct, more reliable) strate-
gies for generating the geometry that is missing.

The global objective of a steam generator is to heat the stream
of water in the most compact manner possible [19,20]. Compact-
ness translates ultimately into less volume, weight and cost of
manufacturing, transportation, assembly and maintenance. It is
also related to the improvement of thermodynamic performance
subject to finite-size constraints, as we discuss further in Section
6. Here we account for this complex design mission by fixing the
volume of the flow device, and by using this constraint consistently
at every level of construction, i.e., at every length scale.

The water flow through the steam generator is driven by the
self-pumping principle illustrated in Fig. 1. The vertical tubes
shown on the right are heated, bubbles form in them, and the li-
quid-steam mixture flows upward. Together, they constitute the
‘‘riser”, which is heated by external combustion gases.
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Nomenclature

A area, m2

b constants
B1,2 constant
c1,2 constants
cP specific heat at constant pressure, J kg�1 K�1

D column diameter, m
f friction factor
g gravitational acceleration, m s�2

h heat transfer coefficient, W m�2 K�1

H height, m, Fig. 1
K constant
L length scale, m
_m mass flow rate, kg s�1

_mscale mass flow rate scale, kg s�1

N number of riser tubes
q heat transfer rate, W
Re Reynolds number
r2 acceleration factor, Eq. (34)
r3 friction factor, Eq. (29)
r4 gravitational factor, Eq. (23)
Tg hot gas temperature, �C
Tin inlet fluid temperature, �C
V total volume, m3

vf specific volume of saturated liquid, m3/kg
vfg change of specific volume between phases, m3/kg
vg specific volume of saturated vapor, m3/kg
V1,2 velocity, m s�1

x quality of liquid–vapor mixture

Greek symbols
DP pressure drop, Pa
DPf friction pressure drop, Pa
DPacc acceleration pressure drop, Pa
k Lagrange multiplier
l dynamic viscosity, N s m�2

m kinematic viscosity, m2 s�1

n dimensionless group, Eq. (20)
q density, kg/m3

U auxiliary function, Eq. (45)
W auxiliary function, Eq. (6)

Subscripts
c cross-section
g gas
max maximum
min minimum
opt optimum
W wall
1 downcomer
2 riser

Superscript
� dimensionless
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The circulation in the downcomer-riser-downcomer loop is dri-
ven by buoyancy effects, as the density of the liquid in the down-
comer is greater than the density of the two-phase mixture in the
riser. While the circulation continues because of the heating
administered to the riser tubes, steam is collected from the upper
plenum while make-up liquid is added to the same plenum.

2. Tube diameters

We begin with the pure fluid mechanics part of the problem,
which is the maximization of steam generation rate per unit of
flow volume. When the quality of the steam (x) produced by the ri-
ser is specified, the maximization of steam generation rate is the
same as maximizing the circulation rate ð _mÞ through the riser-
downcomer loop.

The self-pumping effect [21–24] is due to the difference be-
tween the hydrostatic pressure sustained by the downcomer
(q1gH) and the hydrostatic pressure sustained by the riser
(q2gH), where q1 > q2, and H is the height of both columns. The
driving pressure difference (q1 � q2)gH is balanced by the pressure
losses encountered by the fluid during its circulation,

ðq1 � q2ÞgH ¼ DP1 þ DP2 ð1Þ

For orientation, we begin with a simple model in which the fluid
in both columns is modeled as liquid with constant properties. The
pressure drop due to flow friction along each column is

DP1;2 ¼ 4f 1;2
H

D1;2

1
2
q1;2V2

1;2 ð2Þ

We model the flow as fully turbulent in the fully rough regime,
i.e. with constant friction factor f in each column. Mass conserva-
tion requires that the mass flow rate _m is the same in both
columns,
_m ¼ q1
p
4

D2
1V1 ¼ q2N

p
4

D2
2V2 ð3Þ

By using Eq. (3) to eliminate V1 and V2, we rewrite Eq. (1) as a
global flow resistance that depends on D1 and D2:

ðq1 � q2Þg
ð32=p2Þ _m2 ¼

f1=q1

D5
1

þ f2=q2

N2D5
2

ð4Þ

The two sizes, D1 and D2, vary subject to the total volume
constraint

p
4

D2
1H þ N

p
4

D2
2H ¼ V ; constant ð5aÞ

which means that

D2
1 þ ND2

2 ¼ constant ð5bÞ

The method of undetermined coefficients (or Lagrange multipli-
ers) delivers the optimal D1 and D2 for which the global flow resis-
tance (4) is minimal. The method consists of constructing a linear
combination of the right-hand sides of Eqs. (4) and (5b)

W ¼ f1=q1

D5
1

þ f2=q2

N2D5
2

þ kðD2
1 þ ND2

2Þ ð6Þ

solving the two equations oW/oD1 = 0 and oW/oD2 = 0, and eliminat-
ing k. The result is

D1

D2

� �
opt
¼ N3 f1

f2

q2

q1

� �1=7

ð7Þ

The conclusion is that (D1/D2)opt varies as N3/7, because f1/f2 and
q2/q1 are two constants. To obtain the actual values of D1 and D2,
we combine Eq. (7) with the total flow volume constraint (5a).

The minimized global flow resistance that corresponds to this
design is obtained by combining Eqs. (4), (5a), (7):
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ðq1 � q2Þg
ð32=p2Þ _m2

� �
min
¼ pH

4V

� �5=2 f1

q1
1þ f2=q2

f1=q1

� �2=7

N1=7

" #7=2

ð8Þ

It is to be expected that f2/q2 will be greater than f1/q1, because
the q2 liquid is lighter (it has bubbles), and because turbulent two-
phase flow is more resistive than single phase, (f1 < f2). If f2/q2 is
much greater than f1/q1, then Eq. (8) becomes

ðq1 � q2Þg
ð32=p2Þ _m2

� �
min
ffi pH

4V

� �5=2 f2

q2

� �
N1=2 ð9Þ

and, in addition to Eq. (7), the following results hold:

D1;opt ¼
4V
pH

� �1=2

b�1=7N�1=14 ð10Þ

D2;opt ¼
4V
pH

� �1=2

N�1=2 ð11Þ

where

b ¼ f2=q2

f1=q1
> 1 ð12Þ

Note that both tube sizes decrease as N increases, but D2 de-
creases much faster than D1. The minimal flow resistance increases
in proportion with the group (H/V)5/2(f2/q2)N1/2 and does not depend
on (f1/q1). If V/H is the effective cross-sectional area (Ac) of all the
tubes (downcomer and riser tubes), then the minimal flow resis-
tance varies on A�5=2

c . More attractive is to use a larger Ac and a smal-
ler N, but in this limit the contact surface between the riser and the
combustion gases that heat the q2 stream is small. There is a tradeoff
that leads to the optimal number of riser tubes N, and it comes from
maximizing the heat transfer performance of the assembly.

3. Number of tubes

Consider next the rate of heat transfer (q) from hot gases to the
q2 liquid that flows through the N riser tubes. In a simple model,
the fluid is single phase, the heat transfer conductance is accounted
for by the overall heat transfer coefficient h, and the total tube con-
tact surface is

AW ¼ pD2HN ð13Þ

The hot gases are considered isothermal at the temperature Tg.
The temperature of the q2 fluid at the inlets to the N tubes is Tin.
The heat transfer rate q from Tg to the _m stream is (Ref. [25], p. 319),
H

1D

1f
g

2D

2

2f

m

N

Steam

Liquid
water

m

1 2 3

Downcomer

Riser

q

.

.

...

1

Fig. 1. Steam generator with self-pumping effect, downcomer and riser tubes.
q ¼ _mcP Tg � T in
� �

1� exp �hAW

_mcP

� �� �
ð14Þ

Here all the parameters are known constants except _m and AW,
which both depend on N. According to Eq. (9), the _mðNÞ function is

_m ¼ c1N�1=4 ð15Þ

where c1 is shorthand for the expression

c1 ¼ p�1=4 gðq1 � q2Þ
q2

f2

� �1=2 V
H

� �5=4

ð16Þ

Eqs. (13) and (11) show that

AW ¼ c2N1=2 ð17Þ

where

c2 ¼ ð4pVHÞ1=2 ð18Þ

Together, Eqs. (14)–(18) deliver q as a function of N, which can be
summarized as

q ¼ c1cPðTg � T inÞ
c2h
c1cP

� �1=3

n�1=3ð1� e�nÞ ð19Þ

where

n ¼ c2h
c1cP

N3=4 ð20Þ

The function n�1/3(1 � e-n) reaches its maximum at nopt = 1.904,
which means that the optimal number of riser tubes is

Nopt ¼ 1:904
c1

c2

cP

h

� �4=3

ð21Þ

Furthermore, because c1 is proportional to (V/H)5/4 and c2 is propor-
tional to (VH)1/2, we conclude that Nopt is proportional to V/H7/3, as
follows

Nopt ¼ 1:904
cP

2h

� 	4=3
gðq1 � q2Þ

q2

f2

� �2=3 V

pH7=3 ð22Þ

Tall steam generators should have fewer riser tubes than short
steam generators. The optimal number of riser tubes should be pro-
portional to the total flow volume (downcomer and riser).

As a numerical example, consider a steam generator for a cur-
rent large-scale power plant. Its global parameters are: V = 47 m3,
H = 36 m, q1 = 624 kg/m3, q2 = 518 kg/m3, f2 = 0.00475,
cP = 7700 J/kg K, and h � 104 W/m2 K. The fluid is water at
P = 13.8 MPa. Substituting these parameters in Eq. (22) we obtain
Nopt = 541. In current 100 MW power plant designs the number
of the designed riser tubes is approximately 400. The agreement
is good in an order of magnitude sense. The discrepancy between
541 and 400 tubes can be attributed to the overall heat transfer
coefficient h, the single phase flow assumption in the analysis, or
to the fact that in practice N is not optimized. With the exception
of h, all the data assumed in Eq. (22) are fixed as properties and
physical dimensions that are known with certainty. Therefore, to
evaluate the validity of the optimal number of the riser tubes Eq.
(22), the overall heat transfer coefficient must be investigated
and this means that a more accurate heat transfer model is re-
quired for a definitive constructal design.
4. Two-phase flow in the riser tubes

In Sections 2 and 3 we relied on simple models in order to dem-
onstrate the opportunity for discovering from principle the main
features of the flow architecture: the tube diameters and the num-
ber of riser tubes. In the second part of two-phase flow we rely on
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more accurate models of two-phase flow in order to refine the cal-
culation procedure and the features of the constructal architecture.

Consider the more realistic model where the flow in the riser
tubes is two-phase. To start with, in Eq. (1) the density q2 is re-
placed with by r4/vf

q1 �
r4

v f

� �
gH ¼ DP1 þ DP2 ð23Þ

where r4 is the gravitational factor [26] for the two-phase liquid–
steam mixture column, and vf is the specific volume of saturated li-
quid. The gravitational factor r4 accounts for the void slip effect on
the density of liquid–steam in the vertical column, Fig. 2, where x is
the quality of the two-phase mixture. The frictional pressure loss
along the downcomer is, cf. Eq. (2),

DP1 ¼ 4f 1
H
D1

1
2
q1V2

1 ð24Þ

where V1 is the mean water velocity in the downcomer,

V1 ¼
_m

q1ðp=4ÞD2
1

ð25Þ

and D1 is the inner diameter of the downcomer column. The friction
factor f1 is a function of the downcomer Reynolds number
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Fig. 3. The r3 factor for two-phase mixture frictional pressure drop [26].
Re1 ¼
V1D1

m1
¼

_m
ðp=4ÞD1l1

ð26Þ

and the roughness of the downcomer surface. This function is pro-
vided by the correlations displayed in the Moody chart [27]. In the
present analysis we assume that the surface is smooth, and use a
smooth-wall correlation proposed [28] for the range
2 � 103 < Re1 < 107:

f1ðRe1Þ ¼
1

4ð1:82log10Re1 � 1:64Þ2
ð27Þ

The pressure loss along the riser tubes is due to two effects, fric-
tion (DPf) and acceleration (DPacc) [26]

DP2 ¼ DPf þ DPacc ð28Þ

The pressure drop due to friction in the two-phase flow is

DPf ¼ 4f 2
H
D2

v f

2
_m

A2

� �2

r3 ð29Þ

where D2 is the inner diameter of one riser tube, r3 is the dimen-
sionless friction factor for two-phase flow [26] (see Fig. 3), and A2

is the cross section area of all the riser tubes,

A2 ¼ N
pD2

2

4
ð30Þ

In accordance with the model used for the downcomer, we also
define the riser flow velocity, friction factor and Reynolds number:

V2 ¼
_m=N

q2ðp=4ÞD2
2

ð31Þ

f2ðRe2Þ ¼
1

4ð1:82log10Re2 � 1:64Þ2
ð32Þ

Re2 ¼
V2D2

m2
¼

_m=N
ðp=4ÞD2l2

ð33Þ

The pressure drop due to acceleration in two-phase flow is

DPacc ¼ v f
_m

A2

� �2

r2 ð34Þ

where r2 is the dimensionless acceleration factor [26], shown here in
Fig. 4. Substituting the pressure drop terms in Eq. (23), we obtain the
global flow resistance equation for the self-pumping flow system:

gp2q2
1H

32 _m2 ð1� r4Þ ¼
r2

2N2D4
2

þ f1H

D5
1

þ r3f2H

N2D5
2

ð35Þ
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Fig. 4. The r2 factor for two-phase mixture acceleration pressure drop [26].
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The left side is a global flow resistance indicator, which in tur-
bulent flow is essentially the driving pressure difference divided by
_m2. The constant volume constraint is shown in Eqs. (5a) and (5b).

The length scale of the flow structure is indicated by Eq. (5a),
where we set D1,2 � L:

L ¼ 4V
pH

� �1=2

ð36Þ

From this length scale follow the dimensionless tube sizes

~D1 ¼
D1

L
; ~D2 ¼

D2

L
ð37Þ

and the dimensionless flow volume constraint:

~D2
1 þ N~D2

2 ¼ 1 ð38Þ

The scale of the mass flow rate ð _mscaleÞ follows from Eq. (35),
where we write _m � _mscale and D1,2 � L,

gp2q2
1

32 _m2
scale

¼ f

L5 ð39Þ

therefore,

_mscale ¼ q1g1=2 4V
pH

� �5=4

ð40Þ

~H ¼ H
L
; ~m ¼

_m
_mscale

ð41Þ

The dimensionless version of Eq. (35) becomes

p2

32

~H
~m2 ð1� r4Þ ¼

r2

2N2 ~D4
2

þ f1
~H

~D5
1

þ r3

N2

f2
~H

~D5
2

ð42Þ

where

Re1 ¼
B1 ~m
~D1

; Re2 ¼
B2 ~m

N ~D2

ð43Þ

B1 ¼
4
p

g1=2

m1
L3=2; B2 ¼

4
p

g1=2

m2
L3=2 ð44Þ

Two dimensions vary, ~D1 and ~D2, but in view of the volume con-
straint (38) only one parameter is free to vary, for example the ra-
tio ~D1=~D2. According to the method of Lagrange multipliers
(Section 2), we form the linear combination of the right-hand sides
of Eqs. (42) and (38),

U ¼ r2

2N2 ~D4
2

þ f1
~H

~D5
1

þ r3

N2

f2
~H

~D5
2

þ kð~D2
1 þ N ~D2

2Þ ð45Þ

and solve the system oU=o~D1 ¼ 0 and oU=o~D2 ¼ 0. After eliminating
k, we obtain

N3
~D2

~D1

 !7

¼ 2r2
~D2

5f 1
~H
þ r3f2

f1
ð46Þ

The second term dominates on the right-hand side of Eq. (46) when

~D2

~H
<<

5r3

2r2
f2 ð47Þ

and in this limit Eq. (46) delivers the optimal ratio of tube diameters

~D1

~D2

 !
opt

¼ N3 f1

f2r3

� �1=7

ð48Þ

The assumption (47) is justified because the height is much greater
than the diameter of the riser tubes (D2/H � 10�4), the factor r3 is
significantly greater than the acceleration factor r2, and f2 is of order
10�2 [26]. Even though r2 approaches r3 when P < 5 MPa and the li-
quid–vapor mixture quality (x) is greater than 0.1, the ratio 5r3f2/2r2

is of order 10�2, i.e. much greater than the ratio D2/H.
Eq. (48) resembles Eq. (7), which came from a much simpler

model. The effect of two-phase flow in the riser is conveyed by
r3, which depends on pressure P and quality x [26]. In order to cal-
culate the ~D1=~D2 of Eq. (48) we need to account for the flow regime
[Eqs. (27) and (32)] and the mass flow rate. The latter comes from
the minimized flow resistance, which is obtained by combining
Eqs. (48) and (38) with Eq. (42),

p2

32

~H
~m2 ð1� r4Þ

" #
min

¼ r2ðK2 þ NÞ2

2N2 þ f1
~HðK2 þ NÞ5=2

K5

þ r3

N2 f2
~HðK2 þ NÞ5=2 ð49Þ

where K = (N3f1/f2r3)1/7. The results presented in the next section are
based on assuming the same global parameters as in Section 3, for
example V = 47 m3 and H = 36 m. The resulting range for the mass
flow rate is such that the Reynolds numbers calculated with Eqs.
(26) and (33) vary in the ranges 1.9 � 107 < Re1 < 1.4 � 108 and
3 � 105 < Re2 < 1.2 � 108.

5. The effect of operating pressure

The results developed in the preceding section are sensitive to
the pressure in the loop and the quality of the two-phase mixture
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in the riser tubes. These effects are investigated systematically in
Figs. 5–11, and can be anticipated based on the simple model of
Section 2.

We begin with Fig. 5a, where we set P = 13.8 MPa and recog-
nized [based Eq. (48)] that ð~D1=~D2Þopt should be proportional to
N3/7. Even though we plotted ð~D1=~D2Þopt=N3=7 on the ordinate, a
weak N effect continues to be present. Stronger is the effect of
the quality x, which was given values in the range 0.02–0.12. The
x effect is captured by the factor x�0.043, which appears in the ordi-
nate of Fig. 5b. The exponent �0.043 was determined by minimiz-
ing the scatter that is still visible in Fig. 5b. The conclusion is that
for P = 13.8 MPa the optimal allocation of flow volume is repre-
sented by

~D1

~D2

 !
opt

¼ ð0:77� 0:02ÞN3=7x�0:043 ð50Þ

The corresponding maximized mass flow rate ~mmax is reported
in Fig. 6a. The sensitivity of ~mmax to N changes as N increases,
namely from ~mmax � N�1=8 to ~mmax � N�1=4. Fig. 6b shows the effect
of x, which is a rough proportionality between ~mmax and x0.35. To-
gether, these power-law trends lead to the dimensionless correla-
tions reported in Fig. 7, namely

~mmax ¼ ð2:75� 0:14ÞN�1=8x0:35; ðN � 50Þ
~mmax ¼ ð4:28� 0:16ÞN�1=4x0:35; ðN � 50Þ

ð51Þ

The trends change somewhat when the pressure changes. Fig. 8
shows the P = 0.5 MPa equivalent of Fig. 5b. This time, instead of
Eq. (50) the optimal ratio of diameters is correlated by

~D1

~D2

 !
opt

¼ ð0:33� 0:01ÞN0:45x�0:15 ð52Þ
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Here the N exponent 0.45 is consistent with the N exponent in
Eq. (48), namely 3/7 = 0.43. The maximized mass flow rate at
P = 0.5 MPa is correlated in Fig. 9, as follows:

~mmax ¼ ð0:24� 0:01ÞN�0:075x�0:31; ðN � 50Þ
~mmax ¼ ð0:48� 0:01ÞN�0:26x�0:31; ðN � 50Þ

ð53Þ

The effect of pressure is documented further in Fig. 10. As the
pressure increases, the optimal diameter ratio ð~D1=~D2Þopt increases
for every value of x. The maximum mass flow rate exhibits a more
complicated behavior. At low pressures, the maximum mass flow
rate decreases as the quality increases. At pressures above 2 MPa,
the maximum mass flow rate increases with quality.

This reversal in how ~mmax depends on x is explained by the ana-
lytical solution developed in Section 2. If we take the mass flow
rate maximized in Eq. (9) and nondimensionalize it in accordance
with Eqs. (40) and (41) we obtain

~mmax ¼ 2�5=2pf�1=2
2 N�1=4 ðxv fv fgÞ1=2

v f þ xv fg
ð54Þ

where we replaced q�1
1 with the specific volume of saturated liquid,

vf(P). We also replaced q�1
2 with (vf + xvfg), where vfg = vg � vf and

vg(P) is the specific volume of saturated vapor. In the limit x << 1,
the denominator (vf + xvfg) depends on pressure in two ways. When
the pressure is sufficiently low, vf is negligible relative to xvfg and
Eq. (54) approaches

~mmax;low P ffi 2�5=2pf�1=2
2

v f

v fg

� �1=2
" #

N�1=4x�1=2 ð55Þ

As P approaches the critical pressure, the difference between vg and
vf disappears and xvfg is negligible relative to vf. In this limit Eq. (54)
approaches

~mmax;high P ffi 2�5=2pf�1=2
2

v fg

v f

� �1=2
" #

N�1=4x1=2 ð56Þ

Eqs. (55) and (56) confirm qualitatively the dependence of ~mmax

on N and x, which was correlated as Eqs. (53) and (51), respec-
tively. See the correlations reported for N � 50. Dividing Eqs. (55)
and (56), we see that the transition from one behavior to the other
occurs when the pressure P is such that

v f ðPÞ
v fgðPÞ

ffi x ð57Þ

This relationship between x and P has been plotted for water in
Fig. 11, and it divides the x � P domain into the two subdomains
in which Eqs. (51) and (53) apply.

In closing, we relaxed the assumption that the height H is fixed,
and investigated the effect of H on the main features of the design,
ð~D1=~D2Þopt and ~mmax. Fig. 12 shows that these features are insensi-
tive to H. This can be also shown analytically, because, when the
assumption (47) is valid, ~H drops out from Eq. (42), leaving only

p2

32 ~m2 ð1� r4Þ ¼
f1

~D5
1

þ r3

N2

f2

~D5
2

ð58Þ
6. Conclusions

The main conclusion is that it is possible to derive the main fea-
tures of an engineering flow component from the free search for
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flow configuration when the global size is constrained. Here we
illustrated the constructal design method [2] by focusing an the
steam generator, for which we derived the dimensions of the tubes,
the number of riser tubes, and the circulation flow rate (and the re-
lated steam production rate) – all for specified global size, flow vol-
ume V and height H.

The added benefit of these results is the size effect (V,H), i.e. the
scaling. This means that the designer can predict how the drawing
morphs when the allotted size changes. Scaling up and scaling
down are now possible because the principle of generation of flow
configuration is in hand.

Another practical aspect that is consistent with the present re-
sults is that engineers have long classified steam generators
according to pressure. In other words, the pressure is an essential
factor in the design of the steam generator. The constructal design
developed in this paper sheds light on the effect of pressures on the
main geometric characteristics of steam generator architecture.
The results obtained with the two-phase flow model show that
the optimal configuration of the steam generator is pressure
dependent because the quality depends on the pressure and is a
crucial factor in minimizing the global flow resistance. This obser-
vation is consistent with current designs of steam generators,
which have evolved based on the ‘‘design, build and test method”
over a long time. The designs show different configurations, one for
each pressure.

What we showed here for the design of the steam generator can
and should be extended to the other components of the power
plant. Each owes its thermodynamic imperfection to its finite size
and flow configuration. The finite size cannot be changed, at least
at the component – concept stage. The flow configuration can be
changed, and this is the path to discovering less and less imperfect
components for a given size.

At the power plant level, the many components conceptualized
in this manner can be assembled into one ‘‘construct” that relies on
the fixed sizes of the many. It is at this level that scaling yields ben-
efit, by allowing tradeoffs between the size of one component
against the size of another. All such tradeoffs lead to the distribu-
tion of ‘‘sizes” over the entire installation, with the global objective
of improving the global efficiency of the power plant. The distrib-
uting of sizes is leading the design in the same direction as the
more established methods of distributing (balancing) the destruc-
tion of exergy, or generation of entropy [3,29–31].

Acknowledgement

This research was supported by Doosan Heavy Industries &
Construction Co., Ltd., Changwon, South Korea.

References

[1] A. Bejan, S. Lorente, Constructal theory of generation of configuration in nature
and engineering, J. Appl. Phys. 100 (2006) 041301.
[2] A. Bejan, S. Lorente, Design with Constructal Theory, Wiley, Hoboken, NJ, 2008.
[3] A. Bejan, Advanced Engineering Thermodynamics, second ed., Wiley, New

York, 1997.
[4] A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge

University Press, Cambridge, UK, 2000.
[5] A.H. Reis, Constructal theory: from engineering to physics, and how flow

systems develop shape and structure, Appl. Mech. Rev. 59 (2006) 269–282.
[6] G. Hernandez, J.K. Allen, F. Mistree, Platform design for customizable products

as a problem of access in a geometric space, Eng. Optimiz. 35 (2003) 229–254.
[7] Y. Chen, P. Cheng, Heat transfer and pressure drop in fractal tree-like

microchannel nets, Int. J. Heat Mass Transfer 45 (2002) 2643–2648.
[8] D.V. Pence, Reduced pumping power and wall temperature in microchannel

heat sinks with fractal-like branching channel networks, Microscale
Thermophys. Eng. 6 (2002) 319–330.

[9] A.H. Reis, A.F. Miguel, M. Aydin, Constructal theory of flow architecture of the
lungs, J. Med. Phys. 31 (2004) 1135–1140.

[10] S.M. Senn, D. Poulikakos, Laminar mixing, heat transfer, and pressure drop in
tree like microchannel nets and their application for thermal management in
polymer electrolyte fuel cells, J. Power Sources 130 (2004) 178–191.

[11] S.M. Senn, D. Poulikakos, Tree network channels as fluid distributors
constructing double-staircase polymer electrolyte fuel cells, J. Appl. Phys. 96
(2004) 842–852.

[12] F. Lundell, B. Thonon, J.A. Gruss, Constructal networks for efficient cooling/
heating, Second Conference on Microchannels and Minichannels, Rochester,
NY, 2004.

[13] V.A.P. Raja, T. Basak, S.K. Das, Thermal performance of multi-block heat
exchanger designed on the basis of Bejan’s constructal theory, Int. J. Heat Mass
Transfer 51 (2008) 3582–3594.

[14] M. Lallemand, F. Ayela, M. Favre-Marinet, A. Gruss, D. Maillet, P. Marty, H.
Peerhossaini, L. Tadrist, Thermal transfer in microchannels: applications to
micro-exchangers, French Congress on Thermics, SFT 2005, Reims, 30 May–2
June 2005.

[15] N. Kockmann, T. Kiefer, M. Engler, P. Woias, Channel networks for optimal heat
transfer and high throughput mixers, ECI International Conference on Heat
Transfer and Fluid Flow in Microscale, Castelvecchio Pascoli, Italy, 2005.

[16] Y.S. Muzychka, Constructal design of forced convection cooled microchannel
heat sinks and heat exchangers, Int. J. Heat Mass Transfer 48 (2005) 3119–
3127.

[17] Y.S. Muzychka, Constructal multi-scale design of compact micro-tube heat
sinks and heat exchangers, Int. J. Therm. Sci. 46 (2007) 245–252.

[18] X.-Q. Wang, A.S. Mujumdar, C. Yap, Numerical analysis of blockage and
optimization of heat transfer performance of fractal-like microchannel nets, J.
Electron. Packag. 128 (2006) 38–45.

[19] S.C. Stultz, J.B. Kitto (Eds.), Babcock & Wilcox STEAM its generation and use,
Babcock & Wilcox, 2005.

[20] J.G. Singer (Ed.), Combustion Engineering: A Reference Book on Fuel Burning
and Steam Generation, Revised Edition, Combustion Engineering, Inc., New
York, 1991.

[21] M.J. Lighthill, Theoretical considerations on free convection in tubes, Quart. J.
Mech. Appl. Math. 6 (1953) 398–439.

[22] B.W. Martin, Free convection in an open thermosyphon with special reference
to turbulent flow, Proc. Roy. Soc. A230 (1955) 502–530.

[23] B.W. Martin, Free convection heat transfer in the inclined open thermosyphon,
Proc. Inst. Mech. Eng. 173 (1959) 761–778.

[24] B.W. Martin, H. Cohen, Heat transfer by free convection in an open
thermosyphon tube, B. J. Appl. Phys. 5 (1954) 91–95.

[25] A. Bejan, Heat Transfer, Wiley, New York, 1993.
[26] J.R.S. Thom, Prediction of pressure drop during forced circulation boiling of

water, J. Heat Mass Transfer 7 (1964) 709–724.
[27] L.F. Moody, Friction factors for pipe flow, Trans. ASME 66 (1944) 671–684.
[28] J.P. Holman, Heat Transfer, fifth ed., McGraw-Hill, 1981.
[29] M. Moran, A Guide to Efficient Energy Use, second ed., ASME Press, New York,

1989.
[30] E. Sciubba, R. Melli, Artificial Intelligence in Thermal Systems Design: Concepts

and Applications, Nova Science Publishers, New York, 1998.
[31] A. Bejan, Entropy Generation through Heat and Fluid Flow, Wiley, New York,

1982.


	Constructal steam generator architecture
	Introduction
	Tube diameters
	Number of tubes
	Two-phase flow in the riser tubes
	The effect of operating pressure
	Conclusions
	Acknowledgement
	References


